Summary information [schematics · tetrads · helices · stems · costacks · homepage]

PDB-id
5nyt
Class
DNA
Method
NMR
Summary
M2 G-quadruplex 20 wt% ethylene glycol
Reference
Trajkovski, M., Endoh, T., Tateishi-Karimata, H., Ohyama, T., Tanaka, S., Plavec, J., Sugimoto, N.: (2018) "Pursuing origins of (poly)ethylene glycol-induced G-quadruplex structural modulations." Nucleic Acids Res., 46, 4301-4315.
Abstract
Molecular crowding conditions provided by high concentration of cosolutes are utilized for characterization of biomolecules in cell-mimicking environment and development of drug-delivery systems. In this context, (poly)ethylene glycols are often used for studying non-canonical DNA structures termed G-quadruplexes, which came into focus by emerging structural biology findings and new therapeutic drug design approaches. Recently, several reports were made arguing against using (poly)ethylene glycols in role of molecular crowding agents due to their direct impact on DNA G-quadruplex stability and topology. However, the available data on structural details underlying DNA interaction is very scarce and thus limits in-depth comprehension. Herein, structural and thermodynamic analyses were strategically combined to assess G-quadruplex-cosolute interactions and address previously reported variances regarding the driving forces of G-rich DNA structural transformations under molecular crowding conditions. With the use of complementary (CD, NMR and UV) spectroscopic methods and model approach we characterized DNA G-quadruplex in the presence of the smallest and one of the largest typically used (poly)ethylene glycols. Dehydration effect is the key contributor to ethylene-glycol-induced increased stability of the G-quadruplex, which is in the case of the large cosolute mainly guided by the subtle direct interactions between PEG 8000 and the outer G-quartet regions.
G4 notes
3 G-tetrads, 1 G4 helix, 1 G4 stem · 3(-P-P-P), parallel(4+0), UUUU

Base-block schematics in six views [summary · tetrads · helices · stems · costacks · homepage]

PyMOL session file PDB file View in 3Dmol.js

List of 3 G-tetrads [summary · schematics · helices · stems · costacks · homepage]

 1 glyco-bond=---- groove=---- planarity=0.129 type=planar nts=4 GGGG A.DG3,A.DG8,A.DG12,A.DG17
 2 glyco-bond=---- groove=---- planarity=0.207 type=other  nts=4 GGGG A.DG4,A.DG9,A.DG13,A.DG18
 3 glyco-bond=---- groove=---- planarity=0.228 type=other  nts=4 GGGG A.DG5,A.DG10,A.DG14,A.DG19

List of 1 G4-helix [summary · schematics · tetrads · stems · costacks · homepage]

In DSSR, a G4-helix is defined by stacking interactions of G-tetrads, regardless of backbone connectivity, and may contain more than one G4-stem.

Helix#1, 3 G-tetrad layers, INTRA-molecular, with 1 stem

 1  glyco-bond=---- groove=---- WC-->Major nts=4 GGGG A.DG3,A.DG8,A.DG12,A.DG17
 2  glyco-bond=---- groove=---- WC-->Major nts=4 GGGG A.DG4,A.DG9,A.DG13,A.DG18
 3  glyco-bond=---- groove=---- WC-->Major nts=4 GGGG A.DG5,A.DG10,A.DG14,A.DG19
  step#1  pm(>>,forward)  area=15.40 rise=3.41 twist=24.4
  step#2  pm(>>,forward)  area=11.69 rise=3.36 twist=28.8
  strand#1 DNA glyco-bond=--- nts=3 GGG A.DG3,A.DG4,A.DG5
  strand#2 DNA glyco-bond=--- nts=3 GGG A.DG8,A.DG9,A.DG10
  strand#3 DNA glyco-bond=--- nts=3 GGG A.DG12,A.DG13,A.DG14
  strand#4 DNA glyco-bond=--- nts=3 GGG A.DG17,A.DG18,A.DG19

Download PDB file
Interactive view in 3Dmol.js

2 stacking diagrams
 1  glyco-bond=---- groove=---- WC-->Major nts=4 GGGG A.DG3,A.DG8,A.DG12,A.DG17
2 glyco-bond=---- groove=---- WC-->Major nts=4 GGGG A.DG4,A.DG9,A.DG13,A.DG18
step#1 pm(>>,forward) area=15.40 rise=3.41 twist=24.4

Download PDB file
Interactive view in 3Dmol.js

 2  glyco-bond=---- groove=---- WC-->Major nts=4 GGGG A.DG4,A.DG9,A.DG13,A.DG18
3 glyco-bond=---- groove=---- WC-->Major nts=4 GGGG A.DG5,A.DG10,A.DG14,A.DG19
step#2 pm(>>,forward) area=11.69 rise=3.36 twist=28.8

Download PDB file
Interactive view in 3Dmol.js

List of 1 G4-stem [summary · schematics · tetrads · helices · costacks · homepage]

In DSSR, a G4-stem is defined as a G4-helix with backbone connectivity. Bulges are also allowed along each of the four strands.

Stem#1, 3 G-tetrad layers, 3 loops, INTRA-molecular, UUUU, parallel, 3(-P-P-P), parallel(4+0)

 1  glyco-bond=---- groove=---- WC-->Major nts=4 GGGG A.DG3,A.DG8,A.DG12,A.DG17
 2  glyco-bond=---- groove=---- WC-->Major nts=4 GGGG A.DG4,A.DG9,A.DG13,A.DG18
 3  glyco-bond=---- groove=---- WC-->Major nts=4 GGGG A.DG5,A.DG10,A.DG14,A.DG19
  step#1  pm(>>,forward)  area=15.40 rise=3.41 twist=24.4
  step#2  pm(>>,forward)  area=11.69 rise=3.36 twist=28.8
  strand#1  U DNA glyco-bond=--- nts=3 GGG A.DG3,A.DG4,A.DG5
  strand#2  U DNA glyco-bond=--- nts=3 GGG A.DG8,A.DG9,A.DG10
  strand#3  U DNA glyco-bond=--- nts=3 GGG A.DG12,A.DG13,A.DG14
  strand#4  U DNA glyco-bond=--- nts=3 GGG A.DG17,A.DG18,A.DG19
  loop#1 type=propeller strands=[#1,#2] nts=2 AC A.DA6,A.DC7
  loop#2 type=propeller strands=[#2,#3] nts=1 C A.DC11
  loop#3 type=propeller strands=[#3,#4] nts=2 CA A.DC15,A.DA16

Download PDB file
Interactive view in 3Dmol.js

List of 0 G4 coaxial stacks [summary · schematics · tetrads · helices · stems · homepage]

List of 0 non-stem G4-loops (including the two closing Gs)