Summary information

PDB id
6k3y
Class
DNA
Method
NMR
Summary
G-quadruplex complex with cyclic dinucleotide 3'-3' cgamp
Reference
Winnerdy FR, Das P, Heddi B, Phan AT (2019): "Solution Structures of a G-Quadruplex Bound to Linear- and Cyclic-Dinucleotides." J.Am.Chem.Soc., 141, 18038-18047. doi: 10.1021/jacs.9b05642.
Abstract
Cyclic dinucleotides have emerged as important secondary messengers and cell signaling molecules that regulate several cell responses. A guanine-deficit G-quadruplex structure formation by a sequence containing (4n - 1) guanines, n denoting the number of G-tetrad layers, was previously reported. Here, a (4n - 1) G-quadruplex structure is shown to be capable of binding guanine-containing dinucleotides in micromolar affinity. The guanine base of the dinucleotides interacts with a vacant G-triad, forming four additional Hoogsteen hydrogen bonds to complete a G-tetrad. Solution structures of two complexes, both comprised of a (4n - 1) G-quadruplex structure, one bound to a linear dinucleotide (d(AG)) and the other to a cyclic dinucleotide (cGAMP), are solved using NMR spectroscopy. The latter suggests sufficiently strong interaction between the guanine base of the dinucleotide and the vacant G-triad, which acts as an anchor point of binding. The binding interfaces from the two solution structures provide useful information for specific ligand design. The results also infer that other guanine-containing metabolites of a similar size have the capability of binding G-quadruplexes, potentially affecting the expression of the metabolites and functionality of the bound G-quadruplexes.
G4 notes
2 G-tetrads, 1 G4 helix, 1 G4 stem, 2(-P-P-P), parallel(4+0), UUUU

Base-block schematics in six views

PyMOL session file PDB file View in 3Dmol.js

List of 2 G-tetrads

 1 glyco-bond=---- sugar=---- groove=---- planarity=0.085 type=planar nts=4 GGGG A.DG3,A.DG6,A.DG10,A.DG14
 2 glyco-bond=---- sugar=---- groove=---- planarity=0.081 type=planar nts=4 GGGG A.DG4,A.DG7,A.DG11,A.DG15

List of 1 G4-helix

In DSSR, a G4-helix is defined by stacking interactions of G-tetrads, regardless of backbone connectivity, and may contain more than one G4-stem.

Helix#1, 2 G-tetrad layers, INTRA-molecular, with 1 stem

 1  glyco-bond=---- sugar=---- groove=---- WC-->Major nts=4 GGGG A.DG3,A.DG6,A.DG10,A.DG14
 2  glyco-bond=---- sugar=---- groove=---- WC-->Major nts=4 GGGG A.DG4,A.DG7,A.DG11,A.DG15
  step#1  pm(>>,forward)  area=10.97 rise=3.15 twist=31.1
  strand#1 DNA glyco-bond=-- sugar=-- nts=2 GG A.DG3,A.DG4
  strand#2 DNA glyco-bond=-- sugar=-- nts=2 GG A.DG6,A.DG7
  strand#3 DNA glyco-bond=-- sugar=-- nts=2 GG A.DG10,A.DG11
  strand#4 DNA glyco-bond=-- sugar=-- nts=2 GG A.DG14,A.DG15

Download PDB file
Interactive view in 3Dmol.js

1 stacking diagram
 1  glyco-bond=---- sugar=---- groove=---- WC-->Major nts=4 GGGG A.DG3,A.DG6,A.DG10,A.DG14
2 glyco-bond=---- sugar=---- groove=---- WC-->Major nts=4 GGGG A.DG4,A.DG7,A.DG11,A.DG15
step#1 pm(>>,forward) area=10.97 rise=3.15 twist=31.1

Download PDB file
Interactive view in 3Dmol.js

List of 1 G4-stem

In DSSR, a G4-stem is defined as a G4-helix with backbone connectivity. Bulges are also allowed along each of the four strands.

Stem#1, 2 G-tetrad layers, 3 loops, INTRA-molecular, UUUU, parallel, 2(-P-P-P), parallel(4+0)

 1  glyco-bond=---- sugar=---- groove=---- WC-->Major nts=4 GGGG A.DG3,A.DG6,A.DG10,A.DG14
 2  glyco-bond=---- sugar=---- groove=---- WC-->Major nts=4 GGGG A.DG4,A.DG7,A.DG11,A.DG15
  step#1  pm(>>,forward)  area=10.97 rise=3.15 twist=31.1
  strand#1  U DNA glyco-bond=-- sugar=-- nts=2 GG A.DG3,A.DG4
  strand#2  U DNA glyco-bond=-- sugar=-- nts=2 GG A.DG6,A.DG7
  strand#3  U DNA glyco-bond=-- sugar=-- nts=2 GG A.DG10,A.DG11
  strand#4  U DNA glyco-bond=-- sugar=-- nts=2 GG A.DG14,A.DG15
  loop#1 type=propeller strands=[#1,#2] nts=1 T A.DT5
  loop#2 type=propeller strands=[#2,#3] nts=2 GT A.DG8,A.DT9
  loop#3 type=propeller strands=[#3,#4] nts=2 GT A.DG12,A.DT13

Download PDB file
Interactive view in 3Dmol.js